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ABSTRACT 
This paper presents a design and implementation of a cyber-
physical system (CPS) for neurally controlled artificial legs. The 
key to the new CPS system is the neural-machine interface (NMI) 
that uses an embedded computer to collect and interpret 
electromyographic (EMG) signals from a physical system that is a 
leg amputee. A new deciphering algorithm, composed of an EMG 
pattern classifier and finite state machine (FSM), was developed 
to identify the user’s intended lower limb movements. To deal 
with environmental uncertainty, a trust management mechanism 
was designed to handle unexpected sensor failures and signal 
disturbances. Integrating the neural deciphering algorithm with 
the trust management mechanism resulted in a highly accurate 
and reliable software system for neural control of artificial legs. 
The software was then embedded in a newly designed hardware 
platform based on an embedded microcontroller and a graphic 
processing unit (GPU) to form a complete NMI for real time 
testing. Our preliminary experiment on a human subject 
demonstrated the feasibility of our designed real-time neural-
machine interface for artificial legs. 

Categories and Subject Descriptors 
J.3. [Computer Applications]: Life and Medical Sciences-health  

Keywords 
Neural-machine interface, prosthetics, high-performance 
computer, trust management. 

1. INTRODUCTION 
Rapid advancement of computer technology has completely 
changed the way of our life in terms of how we work, learn, 
conduct business, manufacture, and play. High speed and real 
time embedded computing systems that are widely available as 
commodity have made it possible to  automate  manufacturing, 
transportation, robotic control, wired/wireless communication, 
healthcare systems, and more. In particular, tight coupling of 
cyber systems and biomedical systems has drawn great interests 
in the research community recently. One prominent example is 
computerized prosthetic legs, in which motion and force sensors 

and a microcontroller embedded in the prosthesis form a close-
loop control and allow the user to produce natural gait patterns [1-
2]. However, the function of such a computerized prosthesis is 
still limited due to the lack of neural control. The primitive 
prosthesis control is based entirely on mechanical sensing without 
the knowledge of user intent. Users have to “tell” the prosthesis 
the intended activity manually or using body motion, which is 
cumbersome and does not allow smooth task transitions.  
To allow the user to control the artificial leg as if it is his/her own 
limb, a seamless integration of human neuromuscular system and 
computer system is essential. This integration leads to a cyber-
physical system (CPS), in which a complex physical system (i.e. 
neuromuscular control system of a leg amputee) is monitored and 
deciphered in real time by a cyber system.  The key to the success 
of such integration is the neural-machine interface (NMI) that 
senses neural signals from leg amputees, interprets such signals, 
and makes accurate decisions for prostheses control. 
Electromyographic (EMG) signals represent neuromuscular 
activity and are effective neural signals for expressing movement 
intent [3]. Although EMG-based NMI has been tested for artificial 
arms [4-5], no EMG-controlled prosthetic leg is available, and 
published studies in this area are very limited. This is because 
inevitable challenges in both hardware/software design of 
embedded computer systems (cyber) and accurate interpretation 
of neuromuscular system (physical) make the NMI design for 
neural control of lower limb prostheses difficult.  
1) In human physiological system, EMG signals recorded from 

leg muscles during dynamic movements are highly non-
stationary. Accurate decoding of user intent from such signals 
requires dynamic signal processing strategies [6]. 

2) Accuracy in identifying the user’s intended lower limb 
movement is essential. A 90% accuracy rate might be 
acceptable for control of artificial arms, but it may result in 
one stumble out of ten steps, which is obviously inadequate to 
ensure the patient’s safety in prosthesis use.   

3) There might not be enough EMG recording sites available in 
leg amputees [6]. Design of an algorithm to maximally 
extracting neural information is necessary.  

4) Environmental uncertainty, such as perspiration, temperature 
change, and movement between the residual limb and 
prosthetic socket may cause unexpected sensor failure, 
influence the recorded EMG signals, and reduce the 
trustworthiness of the NMI. It is critical to develop a reliable 
and trustworthy NMI for safe use of prosthetic legs. 

5) Implementing the neural interfacing algorithms on an 
embedded computer system is essential to make the EMG-
based NMIs practical and available to patients with leg 
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amputations. The speed of the embedded system must be 
adequate because any delayed decision-making from the NMI 
also introduces instability and unsafe use of prostheses. 
Streaming and storing multiple sensor data, deciphering user 
intent, and running sensor monitoring algorithms at the same 
time superimpose a great challenge to the design of an 
embedded system for the NMI of artificial legs. 

This paper presents the first real-time, EMG-based neural-
machine interface for artificial legs. Whereas existing work [6]  
[7] provided some piecemeal solutions to certain aspects of the 
above challenges, this new design tightly integrated the human 
neuromuscular system with an embedded system and addressed 
the difficulties in the cyber-physical system described above for 
accurate and reliable user intent identification.  
The neural interfacing algorithm takes EMG inputs from multiple 
EMG electrodes, decodes user intended lower limb movements, 
and monitors sensor behaviors based on trust models. An 
improved EMG pattern recognition (PR) algorithm together with 
a finite state machine (FSM) effectively tackle the difficult 
challenges, resulting from non-stationary EMG signals of leg 
muscles, for accurately deciphering user intent. The neural 
decoding algorithm consists of two phases: offline training and 
online testing. To ensure the trustworthiness of NMI under 
uncertain environment, a trust management (TM) module was 
designed to examine the changes of the EMG signals, estimate the 
trust level of individual sensors, and determine the overall trust 
level of the NMI. The trust information can be used to reduce the 
impact of untrustworthy sensors on the system performance.  
To realize the NMI to be carried by leg amputees, we designed 
new embedded hardware architecture for implementing the 
designed algorithms. The two key requirements for the hardware 
architecture were high speed processing of training process and 
real time processing of interfacing algorithm. To meet these 
requirements, the newly designed embedded architecture 
consisted of an embedded microcontroller, a flash memory, and a 
graphic processing unit (GPU). The embedded microcontroller 
provided necessary interfaces for AD/DA signal conversion and 
processing and computation power needed for real time control. 
We implemented our control algorithm on the bare machine with 
our own memory and IO managements without using existing OS 
to avoid any unpredictability and variable delays. The flash 
memory was used to store training data. EMG PR training process 
involved intensive signal processing and numerical computations, 
which needs to be done periodically when the system trust value 
is low. Such computations can be done efficiently using modern 
GPUs that provide supercomputing performance with very low 
cost. New parallel algorithms specifically tailored to the multi-
core GPU were developed exploiting memory hierarchy and 
multithreading of the GPU. Substantial speedups of the GPU for 
training process were achieved making the classifier training time 
tolerable in practice.     
Finally, to prove the NMI design concept, we tested the design 
methods and our first NMI prototype on an able-bodied subject to 
recognize his intent for sitting and standing, two basic but 
difficult tasks for patients with transfemoral amputations due to 
the lack of power from the knee joint. The system performance 
was quantified and evaluated. 
This paper made the following contributions: 

• Design of the first architecture of a NMI for artificial legs; 

• Novel design of EMG pattern classification combined with 
FSM for decoding the user's intended lower limb movements 
for neural control of artificial legs;   

• Development of abnormal detection and trust evaluation 
models to solve the problem of uncertainty in a biomedical 
application. 

• Design and offline test of a trustworthy sensor interface on 
realistic EMG data collected from a human subject.  

• Optimal neural interfacing algorithm implementation 
specifically tailored to the MPC5566 embedded system and 
GPU architecture for real time operation;   

• Demonstration of the feasibility of designed neural interfacing 
algorithm for deciphering user intent by real-time prototype 
testing on a human subject.  

This paper is organized as follows. The next section presents the 
system architecture and design of algorithms and embedded 
system. The third section describes the experimental settings of 
our first NMI prototype on an able-bodied subject. The results of 
the study are demonstrated in the section 4, followed by related 
work in the section 5 and conclusions in the section 6.     

2. SYSTEM ARCHITECTURES 
2.1 System Architecture 
The architecture of neural-machine interface is demonstrated in 
Figure 1. Multiple channels of EMG signals are the system inputs. 
EMG signals are preprocessed and segmented by sliding analysis 
windows. EMG features that characterize individual EMG signals 
are extracted for each analysis window. The system consists of 
two major pathways: one path for classifying user movement 
intent and the other for sensor trust evaluation (the dashed blocks 
in Figure 1). To identify user intent, EMG features of individual 
channels are concatenated into one feature vector. The goal of 
pattern recognition is to discriminate among desired classes of 
limb movement based on the assumption that patterns of EMG 
features at each location is repeatable for a given motion but 
different between motions [5]. The output decision stream of 
EMG pattern classifier is further processed to eliminate erroneous 
task transitions. In the path for sensor trust evaluation, the 
behaviors of individual sensors are closely monitored by 
abnormal detectors. A trust manager evaluates the trust level of 
each sensor and then adjusts the operation of the classifier for 
reliable EMG pattern recognition.  

 

Figure 1. Software architecture of EMG-based neural-
machine interface for artificial legs. 



The hardware architecture of the NMI (Figure 2) for artificial legs 
consists of seven function blocks: EMG electrodes, amplifier 
circuits, analog-to-digital converter (ADC), flash memory, RAM, 
GPU, and embedded controller. The EMG electrodes collect the 
raw EMG data from human muscles. The amplifier circuits are 
necessary to make the polarity, amplitude range, and signal type – 
whether differential or single-ended – of EMG signals compatible 
with the input requirements of ADCs. The outputs of the amplifier 
circuits are then converted to digital format by the ADCs and 
stored in a flash memory or a RAM. The embedded hardware 
works in two modes: offline training and real time testing. In the 
training mode, the digital EMG data are stored in the flash 
memory. The PR algorithm for training phase includes complex 
signal processing and numerical computations for a large amount 
of data. These computations are done efficiently in a high 
performance GPU. The parameters of trained classifier are stored 
in the flash memory. In the testing mode, the ADCs sample the 
EMG signals continuously, and the converted digital data are 
stored in a RAM of the embedded microcontroller. The 
microcontroller then runs the trained classifier in the testing phase 
and makes decisions of user intent in real time. 

 

2.2 Identification of User Intent  
Decoding intended movements using leg EMGs recorded from 
transfemoral amputees is challenging because (1) the recordable 
EMG sites are limited due to the limb loss and (2) the EMGs are 
highly non-stationary. A dynamic EMG pattern classification 
strategy was adopted to address these challenges in this study. 
Additionally, post-processing methods on the decision stream 
were used for improved system accuracy.  
EMG Signals: EMG signals recorded from gluteal and thigh 
muscles were considered because these muscles are still available 
for patients with transfemoral amputations. 
EMG Features: Four time-domain (TD) features [8] (the mean 
absolute value, the number of zero-crossings, the waveform 
length, and the number of slope sign changes) were proposed for 
real-time operation because of their low computational 
complexity [5] compared to frequency or time-frequency domain 
features. The detailed equation and description of these four TD 
features can be found in [8]. 
EMG Pattern Classification: Various classification methods, such 
as linear discriminant analysis (LDA) [8], multilayer perceptron 
[9], Fuzzy logic [10], and artificial neural network [6], have been 
applied to EMG PR. Due to the computation simplicity, LDA has 
been widely applied to real time control of upper limb prostheses 
[5, 11]. The idea of discriminant analysis is to classify the 
observed data to the movement class in which the posteriori 

probability )|( fCP g  can be maximized. Cg (g∈[1, G]) denotes 

the movement classes; f is the feature vector in one analysis 
window. The posteriori probability is the probability of class Cg 

given the observed feature vector f and can be expressed as 
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and )( fP is the possibility of observed feature vector f . Given 
movement class Cg, the observed feature vectors have a 
multivariate normal (MVN) distribution, 
i.e. ),(~)|( ggg MVNCfP Σμ , where gμ is the mean vector 

and gΣ is the covariance matrix of the class Cg. Additionally, the 

priori possibility is assumed to be equivalent for each movement 
class, and every class shared a common covariance, i.e. Σ=Σg . 

Hence, the maximization of posteriori possibility in (1) becomes  
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is defined as the linear discriminant function. 

In the offline training gμ and Σ  were estimated by feature 

vectors calculated from a large amount of training data and were 
stored in the flash memory.  
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In the real time testing, the observed feature f derived from each 

analysis window was fed to the classifier to calculate 
gCd~ in (4) 

for each movement class and was classified into a specific class 

gC~  that satisfied  
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Dynamic Pattern Classification Strategy: When EMG signals are 
non-stationary, the EMG features across time show large variation 
within the same task mode (class), which results in overlaps of 
features among classes and therefore low accuracy for PR [6]. By 

Figure 2. Hardware architecture of designed neural-
machine interface. 



assuming that the pattern of non-stationary EMGs has small 
variation in a short-time window and EMG patterns are repeatable 
for each defined short-time phase, we designed a phase-dependent 
EMG classifier, which was successfully applied to accurately and 
responsively recognize the user’s locomotion modes [6]. For non-
locomotion modes such as sitting and standing, the classifier can 
be built in the movement initiation phase by the same design 
concept. The structure of such a dynamic design of the classifier 
can be found elsewhere [6].   
Post-processing of Decision Stream: FSM and majority vote were 
used to eliminate erroneous decisions from the classifier. Finite 
state machine [12] models a task as a state. An action of task 
(state) transition can be executed only if a valid transition 
condition is met. Majority vote [5] simply removes the decision 
error by smoothing the decision output. Note that these methods 
can further improve the accuracy of NMI, but may sacrifice the 
system response. 

2.3 Trustworthy Sensor Interface 
The NMI for artificial legs must be reliable and trusted by the 
prosthesis users. To achieve this goal, we designed a trust 
management module that contains three parts: abnormal detection, 
trust manager, and decision support. 
Abnormal Detection: Detecting abnormality in EMG signals is a 
challenging task because the events causing sensor malfunctions 
can be diverse and unexpected. It is difficult to construct the 
training data that can represent all types of reasons behind sensor 
malfunctions. Without relying on the training data, we proposed 
to detect abnormality in EMG signals by a change detector that 
identifies changes in the statistics of EMG signals. Particularly, 
we focused on the two-sided mean change detector.  
Many statistical methods can be used to build the change detector 
[13]. In this work, we chose the Cumulative Sum (CUSUM) 
algorithm [14] because it is reliable for detecting small and 
graduate changes, insensitive to the probabilistic distribution of 
the underlying signal, and optimal in detection speed [15]. 
Two-sided CUSUM detector was used in this work [14].  

0ˆS (i) =  m ax (0 , S (i-1 ) +  x  - - k )h i h i i μ                    (5) 

0 iˆS (i)  =  m ax (0 , S (i-1 )  +  - k  - x )  lo lo μ                  (6) 

where ix represents the thi data sample, 0μ̂  is the mean value of 

data without changes, and k is CUSUM parameter. The smaller 
the k is, the more sensitive the CUSUM detector is to small 
changes. Here, we set k  as 0.008. In (5) and (6), hiS and loS are 
used for detecting the positive and negative changes, respectively. 
If hiS exceeds a certain threshold, a positive change is detected. If 

loS is smaller than a certain threshold, a negative change is 

detected. The initial values of hiS  and loS were set to 0.   
Trust Manager: After the abnormal detector detects the 
disturbance in an EMG signal, the EMG sensor is either 
permanently damaged or perfectly recoverable. To evaluate the 
trust level of the sensor, let 1p denotes the probability that a 
sensor behaves normally after one disturbance is detected. 
Assume all disturbances are independent. The probability that a 
sensor is still normal after i disturbances, denoted by ip , is 

1
i

ip p= . The trust value is computed from the probability 
value by the entropy-based trust quantification method[16], as    
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where T is the trust value and ( )iH p is the entropy calculated as 

2 2( ) log ( ) (1 ) log (1 )i i i i iH p p p p p= − − − −  (7) 

Different 1p values should be set according to the nature of the 

disturbance. The larger the 1p value, the less likely the 
disturbance can damage the sensor. The calculation of trust is 
extendable to the case that different disturbances are detected for 
one sensor. If two disturbances, whose 1p values are 0.8 and 0.9, 

respectively, are detected for a sensor, the ip  value in (7) can be 
replaced by 0.8×0.9. 
Decision Making and Report: The trust information is provided to 
the user intent identification (UII) module to assist trust-based 
decisions. There are two levels of decisions. 
1) Sensor level: When the sensor’s trust value drops below a 

threshold, this sensor is considered as damaged, and its 
reading is removed from the UII module.  

2) System level: After removing the damaged sensors, we can 
calculate the system trust by the summation of trust values of 
the remaining sensors. If the system trust is lower than a 
threshold, this entire UII model is not trustworthy, and 
actions for system recovery must be taken. One possible 
action is to re-train the classifier. Another possible action is 
to instruct the patient to manually examine the artificial leg 
system.  

2.4 Hardware Design  
Technical challenges in hardware design are twofold. First of all, 
in order to increase the decision accuracy, frequent training 
computations are often necessary. Such training computations 
need to be done not only periodically with predetermined time 
intervals but also whenever the system trust level goes below our 
predetermined threshold.  The training algorithms require 
intensive numerical computations that take very long time in the 
range of a few minutes to  hours on a general purpose computer 
system [7]. It is very important to substantially speed up this 
training computation to make the training time of our NMI 
practically tolerable. The second challenge is the real time 
processing of decision making in order to have smooth control of 
artificial legs. Such real time processing includes signal sampling, 
AD/DA conversion, storage of digital information in memory, 
executing PR/FSM algorithms, periodical trust management, and 
decision outputs. To meet these technical challenges, we 
presented a new hardware design incorporating a multi-core GPU 
and an embedded system with a built-in flash memory.  
High performance and low cost multi-core GPUs [17-20] have 
traditionally been thought of as commodity chips to drive 
consumer video games. However, the push for realism in such 
games along with the rapid development of semiconductor 
technologies has made GPUs capable of supercomputing 
performance for many applications at very low cost. There are 
many low-end to medium GPU controller cards available on the 
market for under $50. However they deliver extraordinary 
computation power in the range of several hundreds of GFLOPS. 



Besides high performance and low cost, there has also been a 
technology drive for reliable and low power GPUs alongside 
FPGAs and CPUs for embedded applications such as military 
systems. For example, an embedded system using the ATI 
Radeon HD 3650 GPU [21] draws very little power but delivers 
performance levels of hundreds of GFLOPS. The next-generation 
mobile GPUs are expected to nearly double this performance with 
a similar power envelope.  
Our NMI makes the first attempt to exploit such high speed and 
low cost GPU for the purpose of speeding up complex PR training 
computations. Our design for the training of the classifier used a 
NVIDIA 9500GT graphic card that has four multiprocessors with 
32 cores working at the clock rate of 1.4GHz. Each 
multiprocessor supports 768 active threads giving rise to a total of 
3072 threads that can execute in parallel. These threads are 
managed in blocks. The maximum number of threads per block is 
512. The size of the global memory is 1GB with bandwidth of 
25.6GB/s. 64KB of the global memory is read-only constant 
memory. The threads in each block have 16KB shared memory 
which is much faster than the global memory because it is cached. 
In this study, we connected this GPU card using the x16 PCI 
Express bus. Whenever the training computation was triggered, 
the GPU was called in to perform the training process and store 
the parameters of trained classifier in the flash memory to be used 
for real time decision-making.  
The second part of the hardware design is based on Freescale’s 
MPC5566 132 MHz 32 bits microcontroller unit (MCU) with the 
Power Architecture as shown in Figure 3. The MCU has 40 
channels of ADCs with up to 12 bit resolution and two levels of 
memory hierarchy. The fastest memory is 32KB unified cache. 
The lower level memories include 128KB SRAM and 3MB flash 
memory. The default system clock of the MCU is 12 MHz. The 
frequency modulated phase locked loop (FMPLL) generates high 
speed system clocks of 128 MHz from an 8 MHz crystal 
oscillator. The direct memory access (DMA) engine transfers the 
commands and data between SRAM and ADC without direct 
involvement of the CPU. Minimizing the intervention from CPU 
is important for achieving optimal system response. The device 
system integration unit (SIU) configures and initializes the control 
of general-purpose I/Os (GPIOs). The real-time decision of the 
EMG classifier is sent to a GPIO pin and displayed by a LED 
light on MPC5566 EVB.  

3. EXPERIMENTS AND PROTOTYPE  
3.1 Evaluation of Designed Algorithms 
Assigned Tasks: To prove the design concept, the NMI system 
was designed to decipher the task transitions between sitting and 
standing. These tasks are the basic activity of daily living but 
difficult for patients with transfemoral amputations due to the lack 
of knee power. During the transition phase, EMG signals are non-
stationary. The classifier was designed in the short transition 
phase. Although it is possible to activate the knee joint directly 
based on the magnitude of one EMG signal or force data recorded 
from the prosthetic pylon, unintentional movements of the 
residual limb in the sitting or standing position may accidently 
activate the knee, which in turn may cause a fall in leg amputees. 
Hence, intuitive activation of a powered artificial knee joint for 
mode transitions requires accurate decoding of EMG signals for 
identifying the user’s intent from the brain.  

Data Collection: This study was conducted with Institutional 
Review Board (IRB) approval and informed consent of subjects. 
One male subject, free from orthopedic or neurological 
pathologies, was recruited. The seven monitored gluteal and thigh 
muscles in one side of the lower limb included the gluteus 
maximus (GMA), gluteus medius (GME), rectus femoris (RF), 
vastus lateralis (VL), vastus medialis (VM), biceps femoris long 
head (BFL), and biceps femoris short head (BFS). The EMG 
electrodes were placed over the anatomical locations described in 
[22]. The EMG electrodes contained a pre-amplifier, which band-
pass filtered the EMG signals between 20 Hz and 450 Hz with a 
pass-band gain of 1000. The EMG System (Myomonitor®, 
Delsys Inc., MA) recorded the signals with a 16 Bits signal 
resolution.  
The states of sitting and standing were indicated by a pressure 
measuring mat. The sensors were attached to the gluteal region of 
the subject. During the weight bearing standing, the recording of 
the pressure sensors were zero; during the non-weight bearing 
sitting, the sensors gave non-zero readings. In addition, force 
sensing resistors (FSR) were used to record the timings, when the 
disturbances were introduced to an EMG sensor. All the signals 
were digitally sampled at a rate of 1000Hz.  
Experiment Protocol: In one trial, the subject was instructed to sit 
on a chair (60 cm high), stand up without any assistance, and then 
sit down again. In the sitting or standing position, the subject was 
allowed to move the legs and shift the body weight. A total of 25 
trials were conducted. Rest periods were allowed between trials in 
order to avoid fatigue. 
To evaluate the sensor trust algorithm, another 50 trials were 
tested. In each trial, one of two types of sensor disturbances, i.e. 
motion artifacts and loss of electrode contact, were introduced 
randomly in each task phase. To add motion artifacts, the subject 
tapped an EMG electrode. To simulate loss of electrode contact, 
the EMG electrode was detached from the skin purposely. Each 
type of disturbance was tested 25 times. The timings, when the 
disturbances were introduced, were recorded by a FSR attached 
on the electrode.  
Offline Evaluation of EMG Pattern Recognition: Four classes 
during the movement initiation phase were considered: sitting, sit-
to-stand transition, standing, and stand-to-sit transition. Note that 
the classes of sitting and standing were not stationary because the 

Figure 3. Block diagram of embedded system design on 
MPC5566 EVB for real-time testing. MPC5566: device 
modules; ADC: analog-to-digital converter; FMPLL: 

frequency modulated phase-locked loop; SRAM: internal 
static RAM; SIU: system integration unit; DMA: direct 

memory access. 



subject was instructed to move the legs and shift the body weight 
in these positions. The actual movements (classes) were identified 
by the pressure data under the gluteal region. If the pressure data 
was zero, the subject was in the standing position; if the pressure 
data was above 80% of maximum value recorded, the subject was 
in the sitting position. Otherwise, the subject was in a transition 
from either sit to stand or stand to sit, depending on the previous 
state. Four TD features defined in [8] and LDA-based classifier 
were used. Overlapped analysis windows were used in order to 
achieve prompt system response. For the offline algorithm 
evaluation, 150ms window length and 20ms window increment 
were chosen. Due to the relatively small number of tested trials, 
leave-one-out cross-validation (LOOCV) was utilized in order to 
receive precise estimation of the classification performance. In the 
LOOCV procedure, data in one trial was applied as the testing 
data; the data in the remaining trials were used as the training 
data.  This procedure was repeated so that each trial was used 
once as the testing data. In addition, a simple FSM was designed 
and used to improve the system accuracy (Figure 4). Only if the 
transition condition shown above the arrows was classified, the 
action of switching states was executed.   
Offline Evaluation of Abnormal Detection and Trust 
Management: EMG electrodes recorded EMG signals under the 
task transitions, unintentional leg movements, as well as 
disturbances. There were 3 different states: transitions between 
sitting and standing (S), normal leg movements (N), and 
disturbances (D). The detectors detected two types of results: 
normal (N) or disturbance (D).  
For the data sets with motion artifacts, the data in each trial were 
divided into analysis windows. A state (S, N or D) was assigned 
to each window. We assumed that the state S is perfectly 
identified by the classifier and therefore, did not consider state S 
when evaluating the performance of abnormal detector. There 
were four detection results: (1) Hit (H): Truth = ‘D’, Detection = 
‘D’; (2) False Alarm (F): Truth = ‘N’, Detection = ‘D’; (3) Miss 
Detection (M): Truth = ‘D’, Detection = ‘N’; and (4) Correct no 
detection (Z): Truth = ‘N’, Detection = ‘N’. The performance of 
designed detector were evaluated by 

Probability of detection : HPD
H M

=
+

 

Probability of false alarm : FPFA
F Z

=
+

 

The trust value was also quantified. In this study, the probability 
that a sensor behaves normally after one disturbance (P1) was set 
to 0.05 for loss of electrode contact and 0.8 for motion artifacts.   

3.2 Program Implementation on NMI 
Hardware System 
Both training algorithm and real time testing PR algorithm were 
implemented on the NMI hardware described in the previous 
section. The window length and increment were set to 140ms and 
80ms, respectively. This is because the speed of MPC5566 is 
limited; MPC5566 needs approximate 80ms to compute the EMG 
PR algorithm on data in a 140ms window. Therefore, the window 
increment should be no less than 80ms. If the window length is 
over 120ms, enlarging the window length does not affect the 
classification performance [6] but increases the time for a 
decision-making, which causes delayed system response.   

The computation intensive part of the training algorithm was 
parallelized for the GPU architecture using CUDA: Compute 
Unified Device Architecture, which is a parallel computing 
engine developed by NVIDIA. At the time of this experiment, our 
GPU was not directly connected to the embedded MCU. Rather, 
we used NVIDIA 9500GT graphic card plugged into the PCI-
Express slot of the PC server to perform the training computation. 
The training results were then stored in the flash memory of the 
embedded system board for real time testing. The GPU took the 7 
original EMG inputs, each of which had about 10,000 data points. 
We divided the EMG data into windows with 140 ms in length. 
As a result, each window contained a 140×7 matrix. The training 
algorithm first extracted 4 TD features from each channel, 
producing a 28×1 result matrix for each window. Our parallel 
algorithm on the CUDA spawned 7 threads for each window 
resulting in totally 2,800 threads for 400 windows. All these 
threads were executed in parallel on the GPU to speed up the 
process. The resultant features were stored in a 28×W matrix, 
where W is the number of windows. The algorithm then set up K 
thread blocks, where K is the number of observed motions of the 
user. Each one of the K thread blocks had 28×14 threads, and a 
total of K×28×14 threads could execute simultaneously in parallel 
on the GPU architecture. 
To demonstrate the speedup provided by our parallel 
implementation of this algorithm on the GPU, we conducted an 
experiment that compared the training times of our training 
algorithm on both the GPU system and the fully equipped 3GHz 
Pentium 4 PC server.The real time decision algorithm was 
implemented on Freescale’s MPC5566 embedded system. The 
parameters of the trained classifier, a 28×4 matrix and a 1×4 
matrix, calculated in the training phase by GPU were stored in the 
built-in flash memory on the MPC5566 EVB in advance. The 
ADC sampled raw EMG data of 7 channels at the sampling rate of 
1000 Hz continuously. Same as in the training phase, the EMG 
data were divided into windows of length 140ms. A 28×1 feature 
vector was derived from each window and then fed to the trained 
classifier. After the EMG pattern classification, one class out of 
four was identified. The result was post- processed by the FSM 
and the majority vote algorithm to produce a final decision – sit or 
stand. 
Timing control and data storage are two challenges for the 
implementation due to the speed and memory limitations of the 
embedded controller. We developed our own hardware 
management mechanism on the bare machine of the MPC5566 
without depending on any real time OS to avoid unpredictability 
and delay variations. A circular buffer was used to allow 
simultaneous data sampling and decision making. The circular 
buffer consisted of three memory blocks B1, B2 and B3 that were 
used to store the ADC sampling data. Each block stored the data 
sampled in one window increment. Another memory block, B4, 
was used as a temporary storage during algorithm computation.  

Figure 4. Finite state machine (FSM) model. Ellipses: states 
(i.e. tasks). Arrows: transitions between tasks.



Figure 6. Offline evaluation of designed EMG pattern 
classifier for identifying user intent. Blue line: pressure under 
the gluteal region of the subject. Black lines: decision output 

of designed NMI system when the number of training 
windows are 100, 500, and 1000, respectively. The value of the 
decision stream denotes two states, i.e. 0: standing; 1: sitting.

Figure 5 shows the timing diagram of the control algorithm during 
the real-time decision making process. In Figure 5, tΔ equals to 

the window increment and PRt  is the execution time of PR 
algorithm. Two conditions need to be satisfied to ensure the 
smooth control of decision making without delay: (1) ttPR Δ< ; 
(2) ttw Δ< 2 , where wt is the window length. At point 0t , the 
ADC begins to sample EMG signals continuously and the digital 
data are stored in B1. From point t1, B1 is filled up and the 
incoming data are stored in B2. At t2, the data for the first window 
W1 are available (stored in B1 and B2), and an interrupt request is 
generated to notify the MCU that the PR algorithm program is 
ready to run. The PR computation starts. At the same time, new 
data kept coming in to be stored in B3. After the time interval of 

PRt , at point t3, the PR computation of W1 completes. The first 
decision D1 is made, identifying user’s intent in window W1 
whether to sit or stand. At time t4, B3 is filled up and data for W2 
are ready for the PR computation again. At this time, B1 is no 
longer in use so it can be replaced by new sampling data. At time 
t5, the decision D2 of window W2 is made. At time t6, data for 
W3 (stored in B3 and B1) are available, PR computation for W3 
begins. At time 7t , D3 is done and B2 can be reused.  

3.3 Real-Time Testing of NMI Prototype  
Using the NMI prototype design described above, we carried out 
real time test on the same human subject recruited for the offline 
study. The subject performed transitions between sitting and 
standing continuously. Neural signals as results of such sit-stand 
transitions were sensed and collected from the subject’s muscle. 
These EMG signals were then fed directly to the embedded 
system as analog signals. Our decision algorithm was trying to 
decipher what the subject’s intended movement was in real time. 
The movement decisions made by the classification system were 
displayed on a LED light and a computer monitor in real time. In 
our experiment, a 5-window majority vote was applied to the 
decision stream to further eliminate the classification errors. 

4. RESULTS AND DISCUSSIONS 
4.1 Performance of EMG Pattern Classifier  
The performance of designed EMG pattern classifier in one 
representative trial is shown in Figure 6. The value of the pressure 

under the gluteal region of the subject indicates the timing when 
the subject was either in non-weight bearing sitting (non-zero 
values) or weight-bearing standing state (zero values). When the 
number of training windows was 100, decision errors occurred in 
half of the tested trials. When the training data size increased, the 
classification error reduced. When the number of training 
windows was 1000, only 3 out of 25 tested trials had decision 
errors. Therefore, a large number of training data are desired for 
improved system accuracy, which, however, increases the 
computation requirements and therefore challenges the hardware 
design in practice. 

 
It is noteworthy that the output decisions for mode switches 
always occur before the rising and falling edges of the pressure 
signal for all the trials with correct decisions (e.g. the solid 
decision line in Figure 6). That means our designed EMG 
classifier can accurately identify the user’s intent before the 
subject fully completed the task transitions. Such a system 
response is desirable because the neural control of prosthetic joint 
should occur in the early phase of task transition so that the 
control signal can trigger the action of the joint.  
When 1000 training windows were used, the decision errors were 
caused by the misclassification between the sit-to-stand class and 
the stand-to-sit class during the task transition phase. If a 5-
window majority vote method is used, the error can be reduced to 
0; however, the system response is deteriorated. Other solutions to 
further improve the system accuracy are to develop more complex 
EMG features and PR algorithms than the TD features and LDA 
method. Time-frequency domain features can be efficient in 
extracting information from non-stationary signals. However, the 
computation complexity for the time-frequency features is too 
high, which challenges the hardware design for a fast training 
process. Our previous study demonstrated that GPU can produce 
up to 100 times of speedup for computing time-frequency features 
compared to the regular CPU [7]. Therefore, our designed 
hardware with GPU power extends our design capability to 
develop more sophisticated EMG PR methods for improved 
performance of NMI.  
The performance of EMG classifier under two studied 
disturbances is shown in Figure 7. If an electrode was detached 
from the skin, a large EMG spike was observed, which resulted in 

Figure 5. Timing diagram of real-time decision making 
process. 



decision errors (Figure 7A). Tapping the electrodes also elicited 
signal spikes with relatively small magnitude and sometimes 
signal baseline drifts (Figure 7B). Not all the motion artifacts led 
to decision errors; the ones resulting in the baseline drifts had 
more negative impact on the performance of the EMG classifier 
(Figure 7B). Hence, the design of a trust manager proposed in this 
study is essential to improve the robustness of designed NMI 
system.    

 

4.2 Performance of Sensor Trust Algorithm 
Figure 8 shows the performance of designed trust management 
method. The CUSUM detection curves were sensitive to two 
studied disturbances, but insensitive to the muscle activity due to 
the normal leg motions. Additionally, the CUSUM had very small 
detection delay. The detection curves immediately yielded high 
spikes after the disturbances occurred. The trust value for loss of 
electrode contact directly fell under zero after one event was 
detected; the trust value for motion artifacts gradually reduced 
when consistent disturbances were detected. In the future work, 
we will explore other methods for trust value calculation. For 
instance, for sensors with non-perfect trust values, we can check 
whether their future readings are consistent with other sensors that 
have high trust values. By doing so, the sensors that experienced 
an occasional disturbance and were not damaged can gradually 
regain the trust. We compared the ROC curves of the CUSUM 
detector with two other often suggested change detectors: sliding 
window detector and mean change detector [23] (Figure 9). The 
CUSUM detector shows the best performance with very high 
accuracy. The performance of CUSUM detector achieved 95% 
detection rate and less than 2% false alarm rate.  
The designed CUSUM detector is accurate and prompt. The 
limitations of current study are that we disturbed only one 
electrode and the trust manager evaluated the trust at the sensor 
level. In addition, the algorithm has not been implemented in real 
time. In the next design phase, we will consider the situation with 
multiple sensor failures and implement the communication 
between the trust manager and the classifier for improved system 
trustworthiness. 

 

 

4.3 Performance of CPU vs. GPU for 
Training Procedure 
Table 1 shows the measured speedup of our parallel algorithm on 
the NVIDIA GPU over the PC server for different window sizes. 
It is clear from this table that our parallel implementation on the 
GPU gives over an order of magnitude speedup over the PC 
server. This order of magnitude speedup is practically significant. 
Consider the case where the training time took half hour on a PC 
server [7]. The same training algorithm takes less than a minute 
using our new parallel algorithm on the GPU. From an amputee 
user point of view, training for less than a minute for the purpose 
of accurate and smooth neural control of the artificial leg is fairly 
manageable as compared to half hour training every time when 
training is necessary. Furthermore, the speedup increases as the 
number of windows increases (Table 1). As a result, parallel 
computation of the training algorithm on GPU helps greatly in the 
NMI design since the larger the number of windows, the higher its 
decision accuracy will be, as shown in Figure 6. 

Table 1. Speedups of our GPU parallel training algorithm 
over the 3GHz PC server. 

Window size 100 200 400 600 800 

Speedup 22.98 29.50 35.94 37.16 39.21 

4.4 System Performance in Real-Time 
The real time performance of the NMI prototype is shown in 
Figure 10. The continuous testing lasted for over 10 minutes. All 

B. Motion Artifacts A. Loss of contact 

Figure 7. Offline performance of EMG pattern classifier 
under two disturbances: (A) loss of electrode contact and (B) 
motion artifacts. The EMG signals under disturbances are 

demonstrated. The timings when the disturbances were 
introduced are indicated by FSR data (0: normal; 1: under 

disturbance). The output decisions (0: standing; 1: sitting) are 
aligned with the pressure data (the lower panels). 

Figure 9. Comparison of ROC curves of the detectors based 
on CUSUM, change detectors, and the sliding window. 

B. Motion Artifacts A. Loss of Contact 

Figure 8. Offline performance of the abnormal detector 
under (A) loss of electrode contact and (B) motion artifacts. 

The representative EMG signals (upper panel), the detection 
curves of CUSUM (middle panel), and the trust value (lower 

panel) are demonstrated. 



the transitions between sitting and standing were accurately 
identified. Although the subject moved the instrumented side of 
leg in the sitting and standing position and shifted the weight in 
the standing position, no erroneous mode switch was presented. 
Since a 5-window majority vote method was applied, around 
400ms decision delay for the sit-to-stand transitions were 
observed, compared to the falling edges of pressure data 
(indicated by arrows in Figure 10). The video of real-time system 
performance can be found at 
http://www.ele.uri.edu/linc/htm/video.html.  Based on the 
subject’s performance, the decision switched from sitting to 
standing before the full weight-bearing standing position. Clearly, 
the majority vote method significantly improves the system 
accuracy but sacrifices the system response. 
The 100% classification accuracy in the real time testing 
demonstrates the potential of our designed NMI prototype. 
Although the system response for sit-to-stand should occur before 
the subject lifts all the weight from the chair, 400ms delay may be 
acceptable for leg amputees. This is because the prosthetic joint 
does not react and the amputee cannot stand up until the decision 
from the NMI is made. In addition, the system response can be 
improved by using other types of embedded system faster than 
Freescale’s MPC5566. Due to the speed limitation of MPC5566, 
the decision could only be updated every 80ms in this study. If a 
faster embedded system were used, the window increment size 
could have been reduced, and the decision update rate can be 
improved.   

 

5. Related Work 
Real-time EMG pattern recognition has been designed to increase 
the information extracted from EMG signals and improve the 
dexterity of myoelectric control for upper limb prosthetics [5, 11]. 
However, no EMG-controlled lower-limb prostheses are 
available. Recently, the need for neural control of prosthetic legs 
has brought the idea of EMG-based control back to attention. Two 
previous studies have attempted to use EMG signals to identify 
locomotion modes for prosthetic leg control [6, 24].  Jin et al. [24] 
used features extracted from EMG signals from a complete stride 
cycle. Using such features, the algorithm results in a time delay of 
one stride cycle in real-time. In practical application, this is 
inadequate for safe prosthesis use. Our previous study designed a 
phase-dependent EMG pattern recognition method [6], which is a 
dynamic classifier over time. The result indicated over 90% 
classification accuracy, which can be applied for real time NMI. 
While both studies demonstrated that EMG information recorded 

from transfemoral amputees is sufficient for accurate 
identification of user intent, there has been no experimental study 
on design and implementation of embedded system to realize the 
NMI for reliable and real time control of prosthesis.  
Trust has been a well-studied concept in sociology and 
psychology [25].  Recently, it was introduced to the distributed 
computer networks for the purpose of (a) enhancing network 
security and reliability and (b) stimulating cooperation among 
network entities [26]. Various trust models have been developed 
to quantify trust in authorization and access control, electronics 
commerce, peer-to-peer networks, ad hoc and sensor networks, 
electronic communities, and pervasive computing. However, the 
concept of trust is rarely used in biomedical systems.  
There has been extensive research in using GPUs for general 
purpose computing (GPGPU) to obtain exceptional computation 
performance for many data parallel applications [21, 27-31]. A 
good summary of GPGPU can be found in  [27, 29]. Our prior 
study made the first attempt to use GPU in EMG-controlled 
artificial legs and other medical applications [7]. Our results on 
individual computation components on EMG signal pattern 
recognition showed good speedups of GPU over CPU for various 
window sizes. The focus of the work reported in [7] was on 
parallel implementations of individual algorithms on GPU 
whereas this paper makes the first attempt to integrate the entire 
system for neural-machine interfacing (i.e. a CPS system) for real 
time control of artificial legs. Our prior works [7] report offline 
analysis, while the work presented in this paper implements 
online decoding method for real-time testing.  To the best 
knowledge of the authors, there has been no existing study on 
implementing the entire training algorithm on GPU for different 
numbers of windows and integrating the training algorithm 
together with real time testing on the same subject.  

6. Conclusions 
A new EMG-based neural-machine interface (NMI) for artificial 
legs was developed and implemented on an embedded system for 
real time operation. In such a cyber-physical system, the cyber 
and the physical system were tightly integrated to achieve high 
accuracy, reliability, and real-time operation. This cyber-physical 
system consists of  (1) an EMG pattern classifier for decoding the 
user’s intended lower limb movements and (2) a trust 
management mechanism for handling unexpected sensor failures 
and signal disturbances. The software was then embedded in a 
newly designed hardware platform based on an embedded 
microcontroller and a GPU to form a complete NMI for real time 
testing. To prove our design concepts, we conducted preliminary 
experiments on an able-bodied human subject to identify his 
intent for sitting and standing. The result showed high system 
accuracy and reasonable time response for real time operation. 
Our NMI design concept has a great potential to allow the leg 
amputees to intuitively and efficiently control the prosthetic legs, 
which in turn will improve the function of prosthetic legs and the 
quality of life of patients with leg amputations. Our future work 
includes the consideration of other movement tasks such as 
walking on different terrains and test of the designed system on 
patients with transfemoral amputations.  
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